1.

The shape ABCDOA, as shown in Figure 1, consists of a sector COD of a circle centre O joined to a sector AOB of a different circle, also centre O.

Given that arc length CD = 3 cm, $\angle COD = 0.4$ radians and AOD is a straight line of length 12 cm,

(a) find the length of OD,

(2)

(b) find the area of the shaded sector AOB.

(3)

a)
$$OD = \text{ radius}$$

$$S = \text{ rO}$$

$$S = \text{ avc length} = 3 \text{ cm}$$

$$V = \text{ radius}, ?$$

$$0 = 0.4 \text{ radions}$$

$$3 = \text{ r} \times 0.4 = \text{ rescaled}$$

$$3 = \text{ r} \times 0.4 = \text{ rescaled}$$

$$Figure 1$$

$$= \frac{17.8 \text{ cm}^2}{1}$$
(Total for Question is 5 marks)

2.

Figure 1

Figure 1 shows a sector *AOB* of a circle with centre *O* and radius *r* cm.

The angle AOB is θ radians.

The area of the sector AOB is 11 cm²

Given that the perimeter of the sector is 4 times the length of the arc AB, find the exact value of r.

alea of Sector: $\frac{1}{2}$ (a) $\frac{1}{2} = 11$ $\frac{1}{2} = 11$ $\frac{1}{2} = 30$ $\frac{1}{2} = 30$ $\frac{1}{2} = 11$ $\frac{1}{2} = 11$ $\frac{1}{2} = 30$ $\frac{1}{3} = 11$ $\frac{1}{3} = 11$ $\frac{1}{3} = 33 = 30$ $\frac{1}{3} = 33 = 30$ $\frac{1}{3} = 33 = 30$ $\frac{1}{3} = 33 = 30$

3.

Figure 1

Figure 1 shows a sector AOB of a circle with centre O, radius 5 cm and angle $AOB = 40^{\circ}$ The attempt of a student to find the area of the sector is shown below.

Area of sector =
$$\frac{1}{2}r^2\theta$$

= $\frac{1}{2} \times 5^2 \times 40$
= 500 cm^2

(a) Explain the error made by this student.

(1)

(b) Write out a correct solution.

(2)

a)
$$A = \frac{1}{2} \int_{0}^{2} 0$$
 is Valid for Padians, only, So therefore the Student uses it incorrectly. Since owe angle is in degrees (and the Student doesn't convert it to radians).

Area of the sector =
$$\frac{angle}{360}$$
 the $\frac{angle}{360}$ angle = 40° , $r = 5cm$

$$= \frac{40 \times 11 \times 5^{2}}{360} = 360 \times 11 \times 5^{2} = 36$$